Surgery to treat gallstones and acute inflammation of the gallbladder Report 259 (2016) **Appendix** ## **Appendix 1 Tables of included studies** Table 14.1 Cholecystectomy versus no cholecystectomy in symptomatic gall stone decease. | Author
Year
Reference
Country | Study
period | Cholecystect
omy / no
cholecystecto
my | Age | Type of study | Exclusions | Op
tech | Outcome
measures
early/late | Conversion | Follow
up
time | Harms | Over all death | Study
quality | |---|-----------------------------|---|---|---|------------------------------------|--|--|--|---|--|--|------------------| | Schmidt et al
Norway
2011
[16] | Inclusio
n 1991-
1994 | 68/69 | Mean
range)
49.7 (20-
79)
years | RCT uncomplica ted gallstone disease Same population as Søndenaa et al 1997 [18] but here is also a third hospital included, i.e. same population as Vetrhus et al 2002 [22]. | See
Søndenaa et
al 1997 [18] | Not
describ
ed | Conversion
rate and rate
of adverse
gall stone
related
events | 50.5 % randomized to observation underwent operation (median time 28 months). 88.2% randomized to operation underwent operation (median time 3 months). Very few operations performed after 5 years. | Mean
(range)
14 (13.5-
16) years | 1 patient each randomized to observation with acute cholecystitis, common bile duct stone and pancreatitis. In patients randomized to operation 1 had an acute pancreatitis caused by ERCP prior to operation and 4 ERCP were performed with 1 CBD stone detected. P for events 0.3. | Overall
13.9%,
non for
gall stone
disease,
equal
between
groups | Medium | | Schmidt et al
Norway
2011
[17] | Inclusio
n 1991-
1994 | 31/33 | See
Vetrhus
et al
2005
[19] | RCT acute cholecystits. See Vetrhus M "quality of" 2003. Same population but longer follow-up. | See Vetrhus
et al 2005
[19] | Laparos
copic/
open/
convert
ed(n) in
cholecy
stectom
y group
45/15/0
And in
observa
tion | See Vetrhus
et al 2005
[19] | 87.1% in
cholecystecto
my group and
33.3% in
observation
group had
undergone
surgery | Mean
(range)
14 (13-
16)
years. | 10/33 patients in observation group experienced complicated gall stone disease (cholecystitis, CBD, and/or gallstone pain, the latter being n=1). | 8/10 deaths, none caused by gallstone disease or gallbladd er cancer. | Medium | | Author
Year
Reference
Country | Study
period | Cholecystect
omy / no
cholecystecto
my | Age | Type of study | Exclusions | Op
tech | Outcome
measures
early/late | Conversion | Follow
up
time | Harms | Over all death | Study
quality | |---|-----------------------------|--|--|--|---|----------------------|-----------------------------------|--|---------------------------------------|--|----------------------|------------------| | | | n | | | | group
29/2/4 | | | | 6 /31 patients in the operation group experienced complicated gall stone disease (pain attacks n=4). | | | | Søndenaa et
al
Norway
1997
[18] | Inclusio
n 1991-
1994 | Symptomatic gall bladder stone 59/61 Symptomatic gall bladder stone and cholecystitis 31/33 | Median
(range)
51 (20-
79)
and
57 (26-
77)
respectiv
ely | RCT 4 hospitals recruited but only 2 had substantial patient recruitment and only these 2 were thus included | Age < 18 or
> 80,
pregnancy,
gangrenous
gallbladder,
suspected
CBD stone,
achalculos
cholecystitis,
patient
preferred
symptoms
(6.8%),
severer or
well tolerable
symptoms. | Not
describ
ed | Conversion rate | 12% of patients with no chole-cystitis and 13% with a history of cholecystitis randomized to operation switched to observation. Corresponding figures for patients randomized to observation switching to operation were 25 and 24% respectively. | 1.5-4
years,
mean not
given. | Not described | Not
describe
d | Medium | | Author
Year
Reference
Country | Study
period | Cholecystect
omy / no
cholecystecto
my | Age | Type of study | Exclusions | Op
tech | Outcome
measures
early/late | Conversion | Follow
up
time | Harms | Over all death | Study
quality | |---|---|---|---|---------------------------------------|---------------------------------------|----------------------|--|---|---|---|--|------------------| | Vetrhus et al
Norway
2005
[19] | See
Sønden
aa et al
1997
[18] | 31/33 | See
Søndena
a et al
1997
[18] | See
Søndenaa
et al 1997
[18] | See
Søndenaa
et al 1997
[18] | Not
describ
ed | Pain and
QoL at 6, 12
and 60
months. No
difference
between
groups. | See Søndenaa
et al 1997 [18] | Median
67
months | N.A. | See
Søndena
a et al
1997 [18] | Medium | | Vetrhus et al
Norway
2003
[21] | Inclusio
n 1991-
1994 | 31/33 | See
Søndena
a et al
1997
[18] | See
Schmidt et
al 2011
[16] | See
Søndenaa
et al 1997
[18] | Not
describ
ed | Cumulative risk of cholecystect omy and gall stone related complication. | 13 % randomized to operation switched to observation and 30% randomized to operation switched to operation. | Median
(range)
67 (56-
98)
months | Cholecystecto my group/observat ion group: events (n) Admission for pain 3/4. Acute cholecystitis 1/9. CBD stone 1/4. Acute pancreatitis 1/0. (p=0.09). Patients (n) with any of above mentioned events 6/12 (p=0.16). | See
Søndena
a et al
1997 [18] | Medium | | Author
Year
Reference
Country | Study
period | Cholecystect
omy / no
cholecystecto
my | Age | Type of study | Exclusions | Op
tech | Outcome
measures
early/late | Conversion | Follow
up
time | Harms | Over all death | Study
quality | |---|---|---|---|--|-----------------------------------|---|---|---|--|--|---|------------------| | See Vetrhus
et al 2002
[22] | Inclusio
n 1991-
1994 | n
68/69 | See
Schmidt
et al
2011
[16] | RCT Same population as Schmidt M "a randomized) but shorter follow-up I.e. the same population as Søndenaa et al 1997 [18] but here is also a third hospital included. | | Laparos
copic/
open/
convert
ed(n) in
cholecy
stectom
y group
45/15/0
And in
observa
tion
group
29/2/4 | See Schmidt
et al 2011
[16]
Same
outcome
measures
but with a
shorter
follow-up. | 88 % randomized to operation and 51% randomized to observation underwent operation. | Median
(range)
67 (56-
91)
months. | Major complications (i.e. intra - abdominal infection, bile leakage, wound infection, dehiscence) (n) 3 in cholecystecto my, 5 in observation group. | 0/0 related to cholecyst ectomy or gall bladder stone. No data for total mortality. | Medium | | Vetrhus et al
Norway
2004
[20] | See
Vetrhus
et al
2002
[22] | 68/69 | See
Vetrhus
et al
2002
[22] | See
Vetrhus et
al 2002
[22] | See Vetrhus
et al 2002
[22] | Laparos
copic/
open/
convert
ed(n) in
cholecy
stectom
y group
45/15/0
And in
observa
tion
group
29/2/4 | Pain and QoL at 6, 12 and 60 months. No difference seen over time between groups. Patient with high initial pain randomized to observation were more likely to undergo operation. | See Vetrhus et
al 2002
[22] | See
Vetrhus
et al
2002
[22] | N.A. | See
Vetrhus
et al
2002
[22] | Medium | **Table 14.2 a:** Early vs delayed surgery for acute cholecystectomy – systematic reviews and RTCs. | Author
Year
Country
Reference | Study
period | n
early/
late | Mean age
(years)
early/late | Type of study | Exclusio
n | Def
early/
late | Op
tech | Outcome
measures
early/late | Conversion early/late | Follow
up
time | Harms | Over
all
death | Study
quality | |--|-----------------|---------------------|-----------------------------------|--|---------------|---------------------------------|--------------|---|-----------------------|----------------------|---|----------------------|---| | Cao et al
2015
[24] | | 795/813 | 47 | Systematic
review
15 RTCs
1998-2014 | - | Early
with 24 to
96 hours | Not
given | Total hospital stay (days mean) 4.1/7.3 p>0.001 Days off work 14.75/23.50 p<0.07 | | | Total complications RR 0.66 (95% CI, 0.42; 1.03) Bile duct leak RR 0.79 (95% CI, 0.27; 2.34) Postoperative wound infection RR 0.57 ()%% CI, 0.35; 0.93) Mortality RR 1.03 (95% CI, 0.05; 20.50) | | Medium partly same studies as Gunsura my 2013 Includes Gutt 2013 and Gul 2013 | Studies included in Cao et al. (above) | Gurusamy et | search | 244/244 | 40- 60 | Systematic | | Various | Operating time | 19.7/22.1% | Complication | 0/0 | Medium/ | |----------------|------------|---------|-----------|------------|--|---------|------------------|-------------|---------------|-----|-----------| | al 2013 * [23] | until July | 1 | years in | review (6 | | | (minutes) | RR 0.89; | s total | | high | | | 2012 | | different | studies) | | | MD -1.22 (95% | (95% CI | 6.5/5.0 % | | | | | | | studies | · | | | CI -3.07; 0.64) | 0.63; 1.25) | RR 1.29; | | Return to | | | | | | | | | (6 trials) | (6 trials). | (95% CI | | work | | | | | | | | | | | 0.61;2.72) (5 | | based on | | | | | | | | | Total hospital | | trials) | | 36 | | | | | | | | | stay (days) | | | | patients | | | | | | | | | MD -4.12 (95% | | Bile duct | | in one | | | | | | | | | CI -5.22; -3.03) | | injuries | | trial | | | | | | | | | (4 trials) | | 0.4/0.9% | | | | | | | | | | | | | OR 0.49; | | | | | | | | | | | | | (95% CI 0.05 | | | | Author
Year
Country
Reference | Study
period | n
early/
late | Mean age
(years)
early/late | Type of study | Exclusio
n | Def
early/
late | Op
tech | Outcome
measures
early/late | Conversion early/late | Follow
up
time | Harms | Over
all
death | Study
quality | |--|-----------------|---------------------|-----------------------------------|---------------------------------|---|---|------------------|--|-----------------------|----------------------|---|----------------------|------------------| | | | | | | | | | Return to work
(days)
MD -11,.0
95% CI -19.6; -
2.4) (1 trial) | | | to 4.72)
(5 trials) | | | | Gul et al * 2013 India [26] | 2008-
2011 | 30/30 | 40 (SD 8)/
38 (SD 10) | RCT
1 hospital | Jaundice,
choledoch
o-lithiasis,
pancreatiti
s,
malignanc
y,
previous
upper
abdominal
surgery | <72
hours/
6-12
weeks | Laparo
scopic | Op time (min) 99/81 p<0.05 Blood loss 173/101 (ml) p<0.05 Hospital stay 4.8/10.1 (days) sign | 3/4 ns | not given | Fever 2/1 Pneumonia 2/1 Bile leakage 1/0 Intraabdomin al collect 0/1 Wound infection 1/1 All ns | not
given | Medium/
high | | Gutt et al * 2013* Germany/ Slovenia [25] | 2006-
2010 | 304/314 | 56 (SD16)/
57 (SD17) | RCT
Individual
35 centres | ASA 4-5
Septic
chock
Peroration
Abscess
Pregnanc
y | <24 hours
after
hospital
admission
n/
7-45
days | Laparo
scopic | Morbidity within 75 days 11.8/34.4% Hospital stay 5.4/10.0 p<0.01 Total hospital costs € 2 919/4 262 p<0.01 Post op hospitalisation 4.7/4.9 p=0.57 Morbidity score on day 75 0.53/1.12 p<0.001 | 30/33
p= 0.44 | 75 days | All adverse events 58 (n= 43) / 179 (n=127) Serious adverse events n= 28/85 | 1/1 ns | High | **Table 14.2 b:** Early vs delayed surgery for acute cholecystectomy – Retrospective comparative register study. | Author
Year
Country
Reference | Study
period | n
early/
late | Mean age
(years)
early/late | Type of study | Exclusion | Def early/
late | Op
tech | Outcome
measures
early/late | Conversion early/late | Follow
up
time | Harms | Over all death | Study
quality | |---|-----------------|---------------------|-----------------------------------|---|---|---|---------------------------------------|---|-----------------------|----------------------|--|--|------------------| | de Mestral
et al
2014
Canada
[27] | 2004-2011 | 14 948/
7 254 | 53 (SD18)/
56 (SD 17) | Retrospective comparative register study 154 hospitals in Ontario | Severe
cholecystiti
s,
Biliary
malignancy | ≤7days/
median
8 weeks
(IQR 4-12
weeks) | Laparoscopic
21 280
Open
922 | Post op
hospital stay
(days)
hospital stay
MD -1.9 (95%
CI -2.1: -1.7) | 1 220/719 | >6
months | Major bile
duct injury
n = 38/39
0.28%/0.53
%
RR 0.53
(95% CI
0.31; 0.90) | RR=0.73,
(95% KI:
0.47;
1.15) | Medium | Table 14.3: Laparoscopic vs open cholecystectomy for cholecystitis. | Author
Year
Country | Study
period | Number and
gender
laparoscopic/
open | Median
age
(years)
laparosc
opic/ope
n | | Indica-
tion for
surgery | Assess-
ment and
follow-up | Results
laparoscopic/
open | Harms:
Complications/
Mortality
laparoscopic/
open | Surgery
time
(min)
laparosc
opic/
open | Study quality | |---|-----------------|---|---|--|--------------------------------|----------------------------------|--|--|---|---| | Coccolini et al
2015
Italy and
Ireland
[32] | 1989-
2010 | n = 677/697 Gender not stated. | Not given | Systematic review meta-analysis 4 RCT and 6 observational (4 retropective and 2 prospective) | | | Postoperative length of stay (1 RCT, 1 observational MD -4.74 (95% CI, -9.05; -0.43) | LC vs OC Complications 4 RCTs LC 27/154 OC 43/156 OR 0.54 (95% CI, 0.31; 0.94) 4 RCT + 5 observational studies OR 0.46 (95% CI, 0.34, 0.61) Bile leakage 1 RCT, 3 observational studies OR 1,26 (95% CI, 0.34; 4.62) Mortality 4 observational studies OR 0.20 (95% CI, 0.04; 0.89) | MD -90
(95% CI,
-18.11;
16.31) | Medium. Not entirely consequent reporting of the different parameters. Errors in numbering of tables Includes all the above RTCs | | Author | Study | Number and | Median | Randomisa- | Indica- | Assess- | Results | Harms: | Surgery | Study quality | |---------|--------|---------------|----------|------------|----------|-----------|---------------|----------------|----------|---------------| | Year | period | gender | age | tion | tion for | ment and | laparoscopic/ | Complications/ | time | | | Country | | laparoscopic/ | (years) | | surgery | follow-up | open | Mortality | (min) | | | | | open | laparosc | | | | | laparoscopic/ | laparosc | | | | | | opic/ope | | | | | open | opic/ | | | | | | n | | | | | | open | | Studies included in Coccolini et al (above) | Boo et al
2007
Korea
[28] | May-
2004 to
Decem
ber
2004 | n = 33
18/15
9 women 9
men/ 9
women 6
men | LC
53±16
OC
63±13
(P=0.06
2) | RCT
(Computer
randomiztion) | Acute
cholecystiti
s | Preoperati
veday 1,
day 3
postoperati
ve. | a/ "LC causes
less surgical
trauma and
immunosuppre
ssion than
OC".
b/ Hospital
stay (days)
3.7±1.2/6.3±2.7 | Complications LC 0/15 OC 2/18 no significant difference no mortality | 73.2±24/
90.2±23
ns | Medium+ | |---|---|--|---|--|--|--|---|--|---|---| | Catena et al
2013
Italy/
[29] | 2 years | n = 164 20 not included, 11 refused, 9 requested LC 72 72 Gender not given | >18
Median
not
given | RCT
(Randomized
computer to
envelopes) | Acute
cholecystiti
s
Early (<72
hours) | | Conversion rate LC 9.7% (7/72) "Outcome of LC not different from OC in AC". Length of stay in hospital (days) 5.1/5.4 | Complications: OC 25/72 LC 24/72 (ns) 1 bile leakage from the cystic duct in LC group. no mortality | 109/98
ns | Medium/Low poor data description ? Randomization . Process 2/3 gangrene or empyema. | | Johansson
et al.2005
Sweden
[30] | Apr
2002-
Mar
2004 | 35/35
(16 women,
19 men/ 19
women, 16
men) | 53 (23-
84)/ 56
(31-80)
ns | RCT
(Double
blind. Sealed
envelopes
stratified for
age and sex
Individually) | Acute cholecystiti s Symptom s >6hr + lab. | Preoperati
ve during
hospital
stay and
postop (4
w) | Conversion:
8/35
Sick leave ns
Pain score at
discharge ns | Complications LC 2/35 OC 3/35 ns no bile leakage | 90 (30-
155)/
80 (50-
170)
(P=0.04) | Medium , Questions regarding statistics. Biased? | | Author
Year
Country | Study
period | Number and
gender
laparoscopic/
open | Median
age
(years)
laparosc
opic/ope
n | | Indica-
tion for
surgery | Assess-
ment and
follow-up | Results
laparoscopic/
open | Harms:
Complications/
Mortality
laparoscopic/
open | Surgery
time
(min)
laparosc
opic/
open | Study quality | |--|-------------------|---|---|---|---|--|--|--|---|-----------------------| | | | | | | Not more
than 6
days. | Pain score
at
discharge,
Sick
Leave, | Length of stay in hospital (days) 2 (1-10)/2 (1-8) p=0.011 | No mortality | | High conversion rate. | | Kiviluoto et al
1998
Finland
[31] | Jan 95-
Aug 96 | n = 32/31
Gender not
stated. | 61.4
(28-
82)/58.
9 (25-
88) | RCT
(Blinded,
Sealed
envelopes.) | Acute cholecystitis Consecutive >24 hours pain + lab | 1-2 months | Length of stay in hospital LC 4 (2-5) OC 6 (5-8) (p=0.006) Sick leave (days) 13.9/30.9 (p=<.0001) Postoperative complications Major 0/32/7/31(p=0.0048) Minor 1/32/6/31 (p=0.0530) | Complications LC 1/32 OC 13/31 No mortality. | 108.2
(±49.9)/
99.8
(±39.7)
ns | High | MD = mean difference; OR = odds ratio; RTC = randomized controlled trial **Table 14.4:** Laparoscopic and open cholecystectomy for cholecystitis – harms, observational studies. | Author
Year
Country | Study
period | n and
Gender | Median
age
(years)
(range) | Study
design | Aim | Indication
for surgery | Assessment and Follow-up | Bile duct
injuries | Other complications | Mortality | Study
quality | |---|---------------------------------------|---|-------------------------------------|---|---|--|--|---|--|--|---| | Adamsen et
al
1997
Denmark
[35] | 1991-
1994 | n=7 654
Gender not
stated. | Not
stated | Register
study.
All
laparoscopic
cholecystect
omies 1991-
1994 | Assess bile duct injury after LC incidence, types treatment | Symptomatic gallstone and complications Elective and acute laparoscopic cholecystecto my. | Preoperative Peroperative 30 days follow-up. | 57 (0.74%) 84% occurred before conversion to OC. Incidence BDI was not reduced during the study period. 2.1% of LC had bile leakage without BDI. | | 18% in
those
with bile
duct
injury | Medium-
Lacking
coverage
rate and
overall
mortality. | | Pessaux et
al
2001
France
[37] | January
1992-
Decemb
er 1999 | n=139
LC n=50
OC n=89
LC
30 women
20 men.
OC
51 women,
38 men | >75 | Observation
al
Prospective
inclusion of
patients >75
with acute
cholecystitis | Determine the feasibility and the efficacy of LC for AC in patients >75 year and compare with OC. | Acute cholecystitis | All preoperative, and postoperative data were collected prospectively on standardized forms. | None | Postoperative complications, wound infection, subhepatic collection, retained CBD stones, cardiogenic pulmonary oedema, arrhythmia, renal failure, urinary infection would haematoma, septic shock | 4/139 (all after OC) | Medium Selection bias? Long waiting times. | | Author
Year
Country | Study
period | n and
Gender | Median
age
(years)
(range) | Study
design | Aim | Indication
for surgery | Assessment and Follow-up | Bile duct
injuries | Other complications | Mortality | Study
quality | |------------------------------|-----------------|----------------------------------|--|--|---|---------------------------|---------------------------------|-----------------------|--|-----------|------------------| | Strömberg et | 2006- | n=62 488 | <50 | All | Report the | All | Peroperative | - | taken
together.
LC 9/50 (18%)
OC 19/89
(21.3%)
Venous | Not | High | | al
2015
Sweden
[36] | 2011 | 41 859
women
20 628
men | 29 676;
50-70
25 139
>70
7 671
Data
missing
2 | cholecystect
omies 2006-
2011.
Register
study Cross-
matched
with National
patient
register. | incidence of and risk factors for symptomatic venous thromboemb olism after cholecystect omy. | cholecystect omies. | Postoperative 30 day follow-up. | | thromboemb olism in 154 (0.25%). Deep venous thrombosis in 36 (0.06%) Pulmonary embolus in 25 (0.04%). Standardize d incidence rate for deep venous thrombosis 22.2 (95% CI, 13.1; 31.3) Standardize d incidence rate for pulmonary embolus 5.6 (95% CI, 2.3; 8.9) | stated | | | Author
Year
Country | Study
period | n and
Gender | Median
age
(years)
(range) | Study
design | Aim | Indication
for surgery | Assessment and Follow-up | Bile duct injuries | Other complications | Mortality | Study
quality | |---|-----------------------------------|------------------------------------|--|---------------------------------|---|---|--|---|--|--------------------------|---| | Harboe et al
2011
Denmark,
[34] | Januar
y 2006-
June
2009 | 20 307
patients
73%
women | 49 (4-
101) | Register
study | Assess the quality of LC and OC in Denmark | Gallstone
and
complication
s | Conversion rate Length of hospital stay Additional procedures Readmission 30 day mortality | 0,2 % BDI
5,6 %
additional .
procedures
LC and OC
together | Conversion
rate LC 7.6%
Reconstructi
ve | 54/
20 307
(0.27%) | Medium. Does not differ LC and OC completely | | Törnqvist et
al [33]
2015
Sweden | 2005-
2010 | 51 041
67 %
women | 51 (38-
63) in
those
without
BDI | Register
study
(GallRiks) | All BDI | All, 18.2 % cholecystitis | Register
(GallRiks) | 747 (1.5%) | | no
mortality | High | | Rystedt et al
[9]
2016
Sweden | 2007-
2011 | 55 134
60 %
women | 62 (3-
99) | Register
study
(GallRiks) | Severe BDI
(Hannover
scale C or
higher | All, 43.7 %
uncomplicat
ed gallstone
disease | Patient
records in
those
registered
with BDI | 174 (0.3%) | | 6/55 134
(0.01%) | High | BD = bile duct; BDI = bile duct injury; GallRiks = national quality register for cholecystectomies and ERCP; LC = 0 laparoscopic cholecystectomy; OC = open cholecystectomy Table 14.5: Economic evaluations comparing surgery (cholecystectomy) with observation/conservative management. | Author
Year
Reference
Country | Study design Population Setting Perspective | Intervention
vs
control | Incremental cost | Incremental effect | ICER | Study quality and transferability* Further information Comments | |--|--|--|--|---|---|--| | Brazzelli et al
[41]
2014
UK | Model-based CUA Time horizon 5 years Population from 2 RCTs on adults with first episode of symptomatic uncomplicated gallstone disease, suitable for cholecystectomy Secondary care NICE Health and Personal Social Services perspective | Base case model estimates for female aged 51 years I: Surgery C: Conservative management (surgery if symptoms persist) | All costs reported in GBP year 2011/2012 I: 2 340 C: 1 104 Difference: 1 236 | Effects
reported in
QALYs
I: 4.232
C: 4.139
Difference:
0.094 | 13 205 per QALY Conservative management most probable cost-effective at a willingness to pay per QALY below 20 000 | High study quality High transferability to Sweden Further information in [16,17] Results very sensitive to probability of surgery and to QoL of patients with persistent symptoms in conservative management | | de Mestral et
al [42]
2016
Canada | Model-based CUA Time horizon 5 years Register data. Adults with acute cholecystit without previous symptomatic gallstone disease, admitted to ED March 2004-April 2011 (25 545 patients). Propensity score matched Hospital Third party payer perspective (Ontario Ministry of Health and Long Term Care) | Three arms: 1: Early surgery (within 7 days of symptoms) 2: Delayed surgery 3: Watchful waiting (urgent surgery if recurrent symptoms) | All costs reported in CAD year 2011 1: 6 905 3: 7 275 Difference: 370 | Effects reported in QALYs 1: 4.20 3: 3.99 Difference: -0.21 | Watchful waiting dominated by Early surgery (less cost and more QALYs) Sensitivity analyses (threshold and probabilistic) confirm dominance of Early surgery | High study quality High transferability to Sweden Further information in [11,27] Results sensitive to QoL post surgery See table 14.6 for the second arm results | | Sandzén et
al [10]
2013
Sweden | Register-based descriptive study Swedish National Patient Register data. Patients with gallbladder disease (no previous admission for biliary diagnosis for 2 years) admitted to hospital | Four patient groups: 1: Surgery at admission 2: Elective surgery within 2 years | Resource consumption reported as mean days of hospital stay, including index admission | Not reported | Not reported | Study quality assessed as observational study; medium risk of bias 41 % of patients found in group 4. No surgery within 2 years | | January 1988-December 2006
(302 043 admissions) | 3: Emergency
surgery within 2
years | and 2-year
admissions for
biliary diagnoses | See table 14.6 for the second patient group results | |--|---|---|---| | Hospital | | | | | | 4. No surgery | 1: 7.57 | | | No costs reported | (cholecystectomy)
within 2 years | 2: 8.55
3: 12.98
4: 8.05 | | | | | Difference:
4 vs 1: 0.48 days | | ^{*} Study quality is a combined assessment of the quality of the study from a clinical as well as an economic perspective CUA = Cost-utility analysis; GBP = British pound; QoL = quality-of-life; ED = emergency department; CAD = Canadian dollars Table 14.6: Economic evaluations comparing early acute surgery (cholecystectomy) with delayed elective surgery (cholecystectomy). | Author
Year
Reference
Country | Study design Population Setting Perspective | Intervention
vs
control | Incremental cost | Incremental effect | ICER | Study quality and transferability* Further information Comments | |--|--|--|--|--|--|--| | Gutt et al [25]
2013
Germany and
Slovenia | RCT-based CA Follow-up 75 days Adult patients with symptoms of acute cholecystitis and possibility of laparascopic surgery within 24 hours of admission 618 patients from 35 centres Hospital Hospital perspective | I: Immediate
surgery, mean day
of surgery 0.6 days
C: Conservative
treatment and
delayed elective
surgery, mean day
of surgery 25.1
days | All costs reported in EUR year 2010 I: 2 919 C: 4 262 Mean total hospital days: I: 5.4 (95 % CI: 5.08 – 5.71) C: 10.03 (95 % CI: 9.36 – 10.69) | - | - | Moderate study quality Moderate transferability to Sweden 75-day morbidity score statistically significant lower in Immediate group | | Johansson et
al [43]
2003
Sweden | RCT-based, resource consumption Patients aged <91 years with diagnosis acute cholecystitis 145 patients Hospital No costs reported | I: Laparoscopic
surgery within 7
days of symptom
onset C: Conservative
treatment and
delayed elective
surgery 6-8 weeks
later | Total hospital days, median: I: 5 C: 8 | - | - | Moderate study quality Moderate transferability to Sweden 26 % of patients in Delayed group required emergency surgery | | Wilson et al
[45]
2010
UK | Model-based CUA Time horizon 1 year Patients with acute cholecystitis. Many event probabilities from Gurusamy et al, 2010 [51] Hospital | I: Early surgery C: Delayed surgery | All costs reported in GBP year 2006 Per 1000 patients: I: 2 574 457 C: 3 395 997 | Effects reported in QALYs Per 1000 patients: I: 876.48 C: 825.05 | Delayed surgery dominated by Early surgery (less cost and more QALYs) Early surgery has a 70 % probability of being cost-effective against Delayed at a willingness | High study quality High transferability to Sweden Patient groups not clearly described | | | NICE healthcare perspective | | Difference:
-821 540 | Difference:
51.43 | to pay 20 000 per
QALY, and decreased
to a 62 % probability at
a willingness to pay 30
000 | | |--|--|---|---|---|--|---| | Johner et al
[44]
2013
Canada | Model-based CUA Time horizon 1 year Patients with acute cholecystitis. Most event probabilities from Gurusamy et al, 2010 [51] Hospital Healthcare perspective | I: Early surgery C: Delayed elective surgery as defined in [51] | All costs reported in CAD year 2009 I: 5 408.50 C: 7 538.26 Difference: -2 129.76 | Effects reported in QALYs I: 0.9733 C:0.9434 Difference: 0.0299 | Delayed surgery
dominated by Early
surgery (less cost and
more QALYs) | Moderate study quality Moderate transferability to Sweden Few sensitivity analyses reported | | de Mestral et
al [42]
2016
Canada | Model-based CUA Time horizon 5 years Register data. Adults without previous symptomatic gallstone disease, admitted to ED March 2004-April 2011 (25 545 patients) Propensity score matched. Hospital Third party payer perspective (Ontario Ministry of Health and Long Term Care) | Three arms: 1: Early surgery (within 7 days of symptoms) 2: Delayed surgery (elective 8-12 weeks later) 3: Watchful waiting | All costs reported in CAD year 2011 1: 6 905 2: 8 511 Difference: 1 606 | Effects reported in QALYs 1: 4.20 2: 4.18 Difference: -0.02 | Delayed surgery dominated by Early surgery (less cost and more QALYs) Sensitivity analyses (threshold and probabilistic) confirm dominance of Early surgery | High study quality High transferability to Sweden Further information in [11,27] See table 14.5 for the third arm results | | Sandzén et
al [10]
2013
Sweden | Register-based descriptive study Swedish National Patient Register data. Patients with gallbladder disease (no previous admission for biliary diagnosis for 2 years) admitted to hospital January 1988-December 2006 (302 043 admissions) | Four patient groups: 1: Surgery at admission 2: Elective surgery within 2 years | Resource consumption reported as mean days of hospital stay, including index admission and 2-year | Not reported | Not reported | Study quality assessed as observational study; medium risk of bias See table 14.5 for the fourth patient group results | | Hospital | 3: Emergency surgery within 2 | admissions for biliary diagnoss | | | |-------------------|--|---|--|--| | No costs reported | 4. No surgery
(cholecystectomy)
within 2 years | 1: 7.57
2: 8.55
3: 12.98
4: 8.05 | | | | | | Difference:
2 vs 1: 0.98 days | | | ^{*} Study quality is a combined assessment of the quality of the study from a clinical as well as an economic perspective CA = Cost analysis; EUR = Euros; CI = confidence interval; CUA = Cost-utility analysis; CAD = Canadian dollars; GBP = British pounds; ED = emergency department